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A nonlinear observer for gyro alignment estimation is presented. 
The observer is composed of two error terms, an attitude error and 
an alignment error. The observer is globally stable with 
exponential convergence of the attitude errors. The gyro alignment 
estimate converges to the true alignment when the system is 
completely observable. 

INTRODUCTION 

Combined observer-controller designs for the attitude control of rigid flight vehicles 
are a subject of active research’. Successful design of such architectures is complicated 
by the fact that there is, in general, no separation principle for nonlinear systems. In 
contrast to linear systems, “certainty equivalence” substitution of the states from an 
exponentially converging observer into a nominally stabilizing, state feedback control 
law does not necessarily guarantee stable closed-loop operation for the coupled 
~yst.ems~’~. 

One version of this problem, in particular, is the task of forcing the attitude of a rigid 
vehicle to asymptotically track a (time-varying) reference attitude using feedback from 
rate sensors with alignment errors. Alignment errors are typically estimated using a least- 
squares approach, or an extended Kalman filter4-8. Here, in order to determine the 
misalignment errors, we propose utilizing an angular velocity observer similar to the 
observers in refs.1 and 9, using the estimated misalignment state in the nonlinear 
observer presented in ref. 10. In the analysis below we demonstrate that the resulting 
system provides stable estimation of the alignment states. 

The main proof proceeds in two’ steps. First, we extend the analysis of ref. 1 to the 
case of gyro misalignment first for a spacecraft with a constant angular velocity. Given 
the necessary observability conditions, we demonstrate that the alignment estimate 
converges to the true alignment. We extend the analysis for the case of a time varying 
angular velocity. The proof in ref. 1 uses a Lyapunov argument to obtain a similar result, 
but under the assumption that the alignment errors are small; this restriction is removed 
here. 

DEFINITIONS 

The attitude of a spacecraft can be represented by a quaternion, consisting of a unit 
rotation vector e, known as the Euler axis, and a rotation 4 about this axis, given as 
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where q is the quaternion, partitioned into a vector part, 6 and a scalar part, q .  
Typically, in spacecraft attitude applications, the quaternion represents the rotation from 
an inertial coordinate system to the spacecraft body coordinate system. Note that I(q(( = 1 
by definition. The rotation matrix for a specific attitude can be computed as' 

where S(c) is a matrix representation of the vector cross product operation. 

A rotation between coordinate fiames is computed as1* 

Where 
Note that llZ'l1= 0, 5 = +1 indicates that frame 2 is aligned with frame 1. 

defines the rotation fiom the frame defined by q2 to the frame defined by q, . 

The kinematic equation for the quaternion is given as 

where 

The kinematic equation for an attitude matrix is" 

og(t) is the spacecraft angular velocity with respect to inertial space, in gyro coordinates, 
transformed to body coordinates with the alignment matrix Rg(qg). Rg(qg) is computed 
from (1) above with the constant gyro alignment quaternion given as 



The angular velocity is typically measured by a gyro, which can be corrupted by 
various errors, such as bias, alignment, scale factor errors, and noise. In this work we 
consider the case of alignment errors, where the matrix R,(q& is unknown. 

NONLINEAR OBSERVER 

Following the development in Ref. 10, observers for the attitude and gyro alignment 
quaternions are given as 

where 4, represents the transformation from inertial coordinates to the attitude observer 

coordinates, and kg ( 4 , ) ~  , is the estimated angular velocity, transformed to observer 

coordinates with R, (9,). The attitude error quaternion, G o ,  is computed as in (2) with q 
and io, respectively. In Eq.(6b), 4, represents the transformation from gyro coordinates 

to an intermediate coordinate frame, denoted as b y  and k , is the angular velocity of the 

b frame with respect to the gyro frame, which is yet to be specified. 
Taking the derivative of Go, and substituting in Eq. (3) and Eq. (6a) results in the 

following kinematic equation for the attitude error quaternion 

- T  - 

Define the difference in the two angular velocity terms in Eq. (7) as 

First, consider the case where w , is constant. As in Ref. 10, a Lyapunov function is 
given as 

The derivative of V,(t) is 



Noting that FoT (t)to (t) + fi, (t)$, (t) = 0 and substituting %o (t) from Eq. (7) into Eq. 
(1 0) yields 

If &(t) is defined as 

The derivative of the Lyapunov becomes 

(13) k --T V(t) = -7 €, (t)Fo (t) 

Given that V,(t) in Eq. (9) is lower bounded, and Eq. (10) shows that V, (t) 5 0,  7, and 
~YI are bounded. V,(t) is a continuous, twice differentiable function, with V, (t) bounded. 
Applying Barbalat’s lemma2 shows that, in fact, IlF0 (t)l/ -+ 0.  

In order to determine a form for &,(t) in Eq. (6b), the derivative of 63 , as given in 
Eq. (8), is computed as 

Equating Eq. (12) and Eq. (14) 

Since h,(t)  is an observer design variable, it is designed to be perpendicular to 

R, (q,(t))w (any parallel component does not appear in Eq. (15)). This results in 

The above Lyapunov analysis shows that the errors To and 63 are stable and bounded. 
Therefore, as in Ref. 10, the system can be analyzed as a linear time varying system. Let 



As shown in Ref. 10, this system is exponentially stable. In other words, both 117, (t)ll and 

Il;i;(t)ll converge to zero exponentially fast. 
The convergence of i%(t) does not guarantee that the gyro alignment estimate q,(t) 

converges to the true gyro alignment, qg . Rewriting Eq. (7) as 

h ( t )  = (I - E; (Qg (t))w 

Given that (I - E:)?, = 0 ,  the error, G(t), is zero when the angular velocity term, w (t) 

is parallel to Fg (t) , or, ideally, when 117, (t)l/ = 0 indicating that the estimated alignment 
quaternion is equal to the true alignment quaternion. Given that the convergence of the 
attitude error is exponential for a constant angular velocity, a series of discrete attitude 
changes provides observability of the gyro alignment errors, allowing convergence of qg 

Next, consider next the case where w is not constant. In this case, the derivative of 
to q, '  

h ( t )  , given in Eq. (8), becomes 

Inserting (16) into (1 l), along with (15) results in 

Vo(t) = -y€o k --T (t)Fo(t)+iiiT(t)k(t) = -$?,'(t)?,(t) +aT(t)(I-Eg(qg(t))(I-E;(ig(t))&(t) 

Using Eq. (1) to expand Eg (ig (t)) in terms of the quaternion components gives 

vo (t) = -+ F: (t)Z0 (t) + 7,' (t)(w (t)cj (t) - w (t)& (t))T, (t) (17) 

If w (t)& (t) I 0 due to w (t) changing direction and/or decreasing in magnitude, (1 7) 
can be rewritten as 

using 111 - R1I2 = 21/c112. Since Vo (t) 5 0 ,  117, (t)ll and IlEi(t)ll converge to zero 
exponentially fast. Again, this does not guarantee that llZ'g(t)ll converges to zero. (The 
second term on the right of (17) can also evaluate to zero. The convergence then follows 
from the argument above.) 

Integrating (18) results in 



Assuming that w (t)h (t) I 0 ,  the integral terms are finite since the integrands converge 
to zero exponentially fast. If, however, w (t) satisfies a ‘persistency of excitation’ 
condition, such that 

t+s 
- a,I  2 I (w (t)h (t) - w (t)h (t))dz 2 -a,I 

t 

for positive constants al, a2, and 6, the terms in (1 9) can only remain finite if II?, (t)ll 
converges to zero exponentially fast. Intuitively, the alignment is estimated only when 
w (t) changes direction. 

SIMULATION RESULTS 

The simulation consists of the above observer equations, programmed into Matlab. 
Several scenarios are tested. The first considers a constant angular velocity, changed 
discretely at 40 second intervals about the body axes. The initial quaternions are 

q; =[1 0 0 01, q; = [o 0 0 11, qT =[o 1 0 01, qT =[o 0 0 11 

The initial angular velocity is w = [l 1 11 radsec. Figure 1 shows that the alignment 
errors converge to zero. 

Figure 1. Magnitude of Alignment Errors Given Constant Angular Velocity, With 
Discrete Changes at 40 Second Intervals 



The next tests consider a time varying angular velocity, w(t) = w The initial 
Figure 2 shows that the alignment errors quaternions and o, are as given above. 

converge to a constant, not to zero. 

Figure 2. Magnitude of Alignment Errors Given an Exponentially Decaying Magnitude 

Next, the angular velocity is given as w(t) = A(t)w oe-klt, where A(t) is a rotation 
matrix, computed from the (arbitrary) 3-1-2 Euler sequence of [0.3t;-O.lt;0.2t]. The 
initial quaternions and w , are as given above. Figure 3 shows that the alignment errors 
converge to zero. This test is repeated with random initial quaternions. Figuke 4 shows, 
again, that the alignment errors converge to zero. 

Finally, the angular velocity is given as w (t) = A(t)w o ,  with A(t) and o , as above. 
Figures 5 and 6 show the alignment errors given the initial quaternions above, and 
random initial quaternions, respectively. In both cases, the alignment errors converge to 
zero. 
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Figure 3. Magnitude of Alignment Errors Given an Exponentially DecayinglSinusoidal 
Angular Velocity 

0 
time (sec) 

Figure 4. Magnitude of Alignment Errors Given an Exponentially DecayinglSinusoidal 
Angular Velocity with Random Initial Quaternions 



Figure 5. Magnitude of Alignment Errors Given a Sinusoidal Angular Velocity 

Figure 6. Magnitude of Alignment Errors Given a Sinusoidal Angular Velocity with 
Random Initial Quaternions 

CONCLUSIONS 

A nonlinear observer for gyro alignment estimation is developed. The observer is 
proven, via a Lyapunov argument, to be exponentially stable given a constant angular 
velocity. The estimated alignment converges to the true alignment when the angular 



velocity is discretely changed, providing the necessary observability. Given a time 
varying angular velocity, the estimated alignment converges to the true alignment, when 
the angular velocity vector changes direction, again to provide the necessary 
observability. 
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